NetCDF Convention
Version 0.1.1
DEXTER reads equilibrium data from a netCDF file. The variables must follow the following conventions:
Scalars
baxis: The magnetic field strength on the magnetic axis \(B_0\) in \([T]\).raxis: The horizontal position of the magnetic axis \(R_0\) \([m]\).zaxis: The horizontal position of the magnetic axis \([m]\).rgeo: The geometrical axis (device major radius) in \([m]\).
Note
For the normalizations, baxis and raxis should be used. They correspond to the center of the smallest flux surface. rgeo is characteristic of the device, while raxis depends on the configuration.
Coordinates
psip_norm: The poloidal flux coordinate \(\psi_p\) in Normalized Units.theta: The Boozer theta coordinate \(\theta_B\) in \([rads]\).m: The poloidal mode number \(m\) (index coordinate).n: The toroidal mode number \(n\) (index coordinate).
Not used in any calculations:
psi_norm: The toroidal flux coordinate \(\psi\) in Normalized Units.r_norm: The radial distance coordinate \(r\) in Normalized Units.
Variables
q: The safety factor \(q(\psi_p)\).g_norm: The toroidal plasma current \(g(\psi_p)\) in Normalized Units.i_norm: The poloidal plasma current \(I(\psi_p)\) in Normalized Units.b_norm: The magnetic field strength \(B(\psi_p, \theta_B)\) in Normalized Units.alphas_norm: The harmonic amplitudes \(\alpha_{m,n}(\psi_p)\) in Normalized Units.phases: The harmonic phases \(\phi_{m,n}(\psi_p)\) in \([rads]\).
Original SI data (not used in any calculations):
r: The radial distance coordinate \(r(\psi_p)\) in \([m]\).g: The toroidal plasma current \(g(\psi_p)\) in \([T \cdot m]\).I: The poloidal plasma current \(I(\psi_p)\) in \([T \cdot m]\).b: The magnetic field strength \(B(\psi_p, \theta_B)\) in \([T]\).alphas: The harmonic amplitudes \(\alpha_{m,n}(\psi_p)\) in \([m]\).rlab: The lab horizontal coordinate \(R(\psi_p, \theta_B)\) in \([m]\).zlab: The lab vertical coordinate \(Z(\psi_p, \theta_B)\) in \([m]\).psip: The poloidal flux coordinate \(\psi_p\) in \([T \cdot m^2]\).psi: The toroidal flux coordinate \(\psi\) in \([T \cdot m^2]\).